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Plugins

• What are plugins?

• Drupal Plugin API

• How do I use plugins?


• Core plugin types

• How do I create my own plugins?

• Advanced topics


• Derivatives

• Collections



What are 
plugins?
• D.O. — Small, swappable pieces 

of functionality. 

• drupalize.me — Plugins are a 
design pattern.
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What are plugins

http://drupalize.me


Plugin API
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Plugin API
•  Plugin type — the plugin type defines the interface to implement,   

mechanisms for discovery and instantiation, and how the plugin is used.
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Plugin API
•  Plugin type — the plugin type defines the interface to implement,   

mechanisms for discovery and instantiation, and how the plugin is use. 
•  Discovery — This is the process of finding the definitions and metadata for   

all plugins of a given type.  Methods include annotation, YAML, hooks and 
static discovery.
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Plugin API
•  Plugin type — the plugin type defines the interface to implement,   

mechanisms for discovery and instantiation, and how the plugin is used. 
•  Discovery — This is the process of finding the definitions and metadata for all   

plugins of a given type.  Methods include annotation, YAML, hooks and 
static discovery. 

•  Plugin factory — Responsible for instantiating a specific plugin and   
returning a usable instance.

What are plugins >> Plugin API



Plugin API
•  Plugin type — the plugin type defines the interface to implement,   

mechanisms for discovery and instantiation, and how the plugin is used. 
•  Discovery — This is the process of finding the definitions and metadata for all   

plugins of a given type.  Methods include annotation, YAML, hooks and 
static discovery. 

•  Plugin factory — Responsible for instantiating a specific plugin and returning   
a usable instance. 

•  Plugins — A plugin is an implementation of a plugin type definition.  

What are plugins >> Plugin API



Using 
plugins
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Using plugins
• Blocks 

• Menus 

• Fields — types, widgets and formatters 

• REST resources 

• Image effects and formatters 

• Validation constraints 

• Data types 

• Views!

What >> API >> Usage



Using plugins
• drupal debug:plugin — get a list of all the plugin types on your Drupal 

instance


• drupal debug:container — list the services available on your Drupal 
instance

• $manager = \Drupal::service('plugin.manager.block');

What >> API >> Usage



Using plugins
$plugin_manager = \Drupal::service('plugin.manager.block');

$plugin_manager->getDefinitions();

     devel_execute_php 
     devel_switch_user 
     help_block 
     node_syndicate_block 
     search_form_block 
     shortcuts 
     system_branding_block 
     system_breadcrumb_block 
     system_main_block 
     system_menu_block:account 
     system_menu_block:admin 
     system_menu_block:devel 
     system_menu_block:footer 
     system_menu_block:main 
     system_menu_block:tools 
     system_messages_block 
     system_powered_by_block 
     user_login_block 
     views_block:comments_recent-block_1 
     views_block:content_recent-block_1 
     views_block:who_s_new-block_1 
     views_block:who_s_online-who_s_online_block

What >> API >> Usage



Using plugins
$plugin_manager = \Drupal::service('plugin.manager.block');

$plugin_manager->getDefinitions();

$block = $plugin_manager->getDefinition(‘search_form_block’);

[
  admin_label => Drupal\Core\StringTranslation\TranslatableMarkup {#3831},
  category => Drupal\Core\StringTranslation\TranslatableMarkup {#3838},
  id => search_form_block,
  class => Drupal\search\Plugin\Block\SearchBlock,
  provider => search,
]
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Using plugins
$plugin_manager = \Drupal::service('plugin.manager.block');

$plugin_manager->getDefinitions();

$block = $manager->getDefinition('search_form_block');

[
  admin_label => Drupal\Core\StringTranslation\TranslatableMarkup {#3831},
  category => Drupal\Core\StringTranslation\TranslatableMarkup {#3838},
  id => search_form_block,
  class => Drupal\search\Plugin\Block\SearchBlock,
  provider => search,
]

$search_block = $block->build();

What >> API >> Usage



Plugin type

When you want to enable different 
ways of doing the same thing.
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Creating a plugin type
• An interface — to ensure that all plugins of this type really are swappable. 

• A base class — an abstract class that extends the PluginBase class and  
implements your interface. 

• A plugin manager — keeps track of plugins of this type. 

• An annotation file — defines the properties of your plugin. 

• Make your plugin manager a service.

What >> API >> Usage >> Types



Creating a plugin type
drupal generate:plugin:type:annotation

 modules/custom/drupalcamp_2018/src/Annotation/Musician.php 

 modules/custom/drupalcamp_2018/src/Plugin/MusicianBase.php 

 modules/custom/drupalcamp_2018/src/Plugin/MusicianInterface.php 

 modules/custom/drupalcamp_2018/src/Plugin/MusicianManager.php 

 modules/custom/drupalcamp_2018/drupalcamp_2018.services.yml 

 modules/custom/drupalcamp_2018/src/Plugin/Musician/

What >> API >> Usage >> Types



Creating a plugin type

MusicianManager 

public function __construct(\Traversable $namespaces, CacheBackendInterface 
$cache_backend, ModuleHandlerInterface $module_handler) {

  parent::__construct('Plugin/Musician', $namespaces, $module_handler, 'Drupal
\drupalcamp_2018\Plugin\MusicianInterface', 'Drupal\drupalcamp_2018\Annotation
\Musician');

  $this->alterInfo('drupalcamp_2018_musician_info');

  $this->setCacheBackend($cache_backend, 'drupalcamp_2018_musician_plugins');

}
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Creating a plugin type

Musician Annotation 

 class Musician extends Plugin {

   public $id;

   public $name;

   public $instrument;

   // other attributes like rhythm, pitch, etc.

 }

What >> API >> Usage >> Types



Creating a plugin type
Extending DefaultPluginManager 

• CategorizingPluginManagerTrait — Methods for categorizing plugin definitions 
based on a ‘category’ key.  Used in core by ActionManager, BlockManager, 
ConditionsManager and FieldTypePluginManager. 

• FilteredPluginManagerTrait — Methods for plugin managers that allow filtering 
plugin definitions.  Used by BlockManager, ConditionManager and 
LayoutPluginManager. 

• PluginDependencyTrait — For calculating dependencies of a plugin.  Views and 
config entities use this one.

What >> API >> Usage >> Types



What is a 
plugin?
A plugin is an instance of a plugin type.
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Creating a plugin
MY_MODULE/src/Plugin/Musician/Guitarist.php 

namespace Drupal\MY_MODULE\Plugin\Musician;

use Drupal\drupalcamp_2018\Plugin\MusicianBase;

/**
 * Provides a guitarist
 *
 * @Musician (
 *   id = guitarist,
 *   name = Guitar,
 *   instrument = guitar,
 *   . . .
 * )
 */
class Guitarist extends MusicianBase {

}

What >> API >> Usage >> Types >> Plugins



Creating a plugin
$union_rep = \Drupal::service('plugin.manager.musician');

$picker = $union_rep->getDefinition(‘guitarist');

$picker->play('Stairway to Heaven');

What >> API >> Usage >> Types >> Plugins



Plugin 
derivatives
Derivatives are plugins that 
are derived from other data.
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Plugin derivatives
namespace Drupal\MY_MODULE\Plugin\Musician;

use Drupal\drupalcamp_2018\Plugin\MusicianBase;

/**
 * Provides a guitarist
 *
 * @Musician (
 *   id = guitarist,
 *   name = Guitar,
 *   instrument = guitar,
 *   deriver = Drupal\drupalcamp_2018\Plugin\Derivative\GuitarDeriver 
 * )
 */
class Guitarist extends MusicianBase {

}

What >> API >> Usage >> Types >> Plugins >> Derivatives



Plugin derivatives
class GuitarDeriver extends DeriverBase implements ContainerDeriverInterface {

[boring stuff here]

  public function getDerivativeDefinitions($base_plugin_definition) {
    $this->derivatives = [];

    $node_storage = $this->entityTypeManager->getStorage('node');
    $node_ids = $node_storage->getQuery()
      ->condition('type', 'musician')
      ->condition('field_instrument', 'guitar')
      ->execute();

    if (!empty($node_ids)) {
      $nodes = $node_storage->loadMultiple($node_ids);
      foreach ($nodes as $node) {
        $this->derivatives[$node->id()] = $base_plugin_definition;
        $this->derivatives[$node->id()][‘name’] = $node->field_name->getValue();
        $this->derivatives[$node->id()][‘instrument’] = $node->field_axe->getValue();
      }
    }

    return $this->derivatives;
  }

}

What >> API >> Usage >> Types >> Plugins >> Derivatives



Plugin derivatives
$pickers = $union_rep->getDefinitions('guitarist');

     "guitarist:3" => [
       "id" => "guitarist",
       "name" => [
         [
           "value" => "Leo Kottke",
         ],
       ],
       "instrument" => [
         [
           "value" => "12-string Acoustic",
         ],
       ],
       "deriver" => "Drupal\drupalcamp_2018\Plugin\Derivative\GuitarDeriver",
       "class" => "Drupal\drupalcamp_2018\Plugin\Musician\Guitar",
       "provider" => "drupalcamp_2018",
     ],
     "guitarist:4" => [
       "id" => "guitarist",
       "name" => [
         [
           "value" => "Mark Knopfler",
         ],
       ],
       "instrument" => [
         [
           "value" => "Stratocaster",
         ],
       ],
       "deriver" => "Drupal\drupalcamp_2018\Plugin\Derivative\GuitarDeriver",
       "class" => "Drupal\drupalcamp_2018\Plugin\Musician\Guitar",
       "provider" => "drupalcamp_2018",
     ],

$mark_knopfler = $musician_manager->getDefinition('guitarist:4');
$mark_knopfler->play('Money For Nothing');

What >> API >> Usage >> Types >> Plugins >> Derivatives



Plugin 
collections
Because we really don’t want 
everybody playing all the 
time.
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Plugin collections

Collections store plugin configurations. 

Best used when plugin instances are configurable. 

Usually associated with config entities, like Blocks and Views.

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections



Plugin collections

Core 

• Condition 

• Entity 

• Filter 

• Image 

• Tours 

• Views — https://www.drupal.org/project/views/issues/
1817582

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections

https://www.drupal.org/project/views/issues/1817582


Plugin collections
namespace Drupal\drupalcamp_2018;  
 
use Drupal\Core\Plugin\DefaultLazyPluginCollection;  
 
/**  
 * An experimental collection of musicians.  
 */  
class MusicianPluginCollection extends DefaultLazyPluginCollection {

 
  /**  
   * The key within the plugin configuration that contains the plugin ID  
   */  
   protected $pluginKey = 'id';

 
}

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections



Plugin collections

$guitarists = new MusicianPluginCollection('guitarists');

$mark_knopfler = $guitarists->get('guitarist:4');

$mark_knopfler->play('Sultans of Swing');

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections



One more 
thing…
    

    https://www.drupal.org/u/sunset_bill 
  
    https://www.linkedin.com/in/bgbohling/ 
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Unplugging
Resources: 

https://www.drupal.org/docs/8/api/plugin-api 

https://api.drupal.org/api/drupal/core!core.api.php/group/
plugin_api/8.6.x 

Daniel Sipos  
    sitepoint.com 
    webomelette.com 

drupalize.me 

https://www.drupalcampatlanta.com/2018/sessions/
plugins-or-where-does-thing-go
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