
Text

Plugins
Bill Bohling

Sr. Systems/Software Developer
Turner

Where does this thing go?

Photo by Steve Harvey on Unsplash

Plugins

• What are plugins?

• Drupal Plugin API

• How do I use plugins?

• Core plugin types

• How do I create my own plugins?

• Advanced topics

• Derivatives

• Collections

What are
plugins?
• D.O. — Small, swappable pieces

of functionality.

• drupalize.me — Plugins are a
design pattern.

Photo by NeONBRAND on Unsplash

What are plugins

http://drupalize.me

Plugin API

Photo by Adi Goldstein on Unsplash

What are plugins >> Plugin API

Plugin API
• Plugin type — the plugin type defines the interface to implement,

mechanisms for discovery and instantiation, and how the plugin is used.

What are plugins >> Plugin API

Plugin API
• Plugin type — the plugin type defines the interface to implement,

mechanisms for discovery and instantiation, and how the plugin is use.
• Discovery — This is the process of finding the definitions and metadata for

all plugins of a given type. Methods include annotation, YAML, hooks and
static discovery.

What are plugins >> Plugin API

Plugin API
• Plugin type — the plugin type defines the interface to implement,

mechanisms for discovery and instantiation, and how the plugin is used.
• Discovery — This is the process of finding the definitions and metadata for all

plugins of a given type. Methods include annotation, YAML, hooks and
static discovery.

• Plugin factory — Responsible for instantiating a specific plugin and
returning a usable instance.

What are plugins >> Plugin API

Plugin API
• Plugin type — the plugin type defines the interface to implement,

mechanisms for discovery and instantiation, and how the plugin is used.
• Discovery — This is the process of finding the definitions and metadata for all

plugins of a given type. Methods include annotation, YAML, hooks and
static discovery.

• Plugin factory — Responsible for instantiating a specific plugin and returning
a usable instance.

• Plugins — A plugin is an implementation of a plugin type definition.

What are plugins >> Plugin API

Using
plugins

Photo by rawpixel on Unsplash

Using plugins
• Blocks

• Menus

• Fields — types, widgets and formatters

• REST resources

• Image effects and formatters

• Validation constraints

• Data types

• Views!

What >> API >> Usage

Using plugins
• drupal debug:plugin — get a list of all the plugin types on your Drupal

instance

• drupal debug:container — list the services available on your Drupal
instance

• $manager = \Drupal::service('plugin.manager.block');

What >> API >> Usage

Using plugins
$plugin_manager = \Drupal::service('plugin.manager.block');

$plugin_manager->getDefinitions();

 devel_execute_php
 devel_switch_user
 help_block
 node_syndicate_block
 search_form_block
 shortcuts
 system_branding_block
 system_breadcrumb_block
 system_main_block
 system_menu_block:account
 system_menu_block:admin
 system_menu_block:devel
 system_menu_block:footer
 system_menu_block:main
 system_menu_block:tools
 system_messages_block
 system_powered_by_block
 user_login_block
 views_block:comments_recent-block_1
 views_block:content_recent-block_1
 views_block:who_s_new-block_1
 views_block:who_s_online-who_s_online_block

What >> API >> Usage

Using plugins
$plugin_manager = \Drupal::service('plugin.manager.block');

$plugin_manager->getDefinitions();

$block = $plugin_manager->getDefinition(‘search_form_block’);

[
 admin_label => Drupal\Core\StringTranslation\TranslatableMarkup {#3831},
 category => Drupal\Core\StringTranslation\TranslatableMarkup {#3838},
 id => search_form_block,
 class => Drupal\search\Plugin\Block\SearchBlock,
 provider => search,
]

What >> API >> Usage

Using plugins
$plugin_manager = \Drupal::service('plugin.manager.block');

$plugin_manager->getDefinitions();

$block = $manager->getDefinition('search_form_block');

[
 admin_label => Drupal\Core\StringTranslation\TranslatableMarkup {#3831},
 category => Drupal\Core\StringTranslation\TranslatableMarkup {#3838},
 id => search_form_block,
 class => Drupal\search\Plugin\Block\SearchBlock,
 provider => search,
]

$search_block = $block->build();

What >> API >> Usage

Plugin type

When you want to enable different
ways of doing the same thing.

Photo by Manuel Nägeli on Unsplash

Creating a plugin type
• An interface — to ensure that all plugins of this type really are swappable.

• A base class — an abstract class that extends the PluginBase class and
implements your interface.

• A plugin manager — keeps track of plugins of this type.

• An annotation file — defines the properties of your plugin.

• Make your plugin manager a service.

What >> API >> Usage >> Types

Creating a plugin type
drupal generate:plugin:type:annotation

 modules/custom/drupalcamp_2018/src/Annotation/Musician.php

 modules/custom/drupalcamp_2018/src/Plugin/MusicianBase.php

 modules/custom/drupalcamp_2018/src/Plugin/MusicianInterface.php

 modules/custom/drupalcamp_2018/src/Plugin/MusicianManager.php

 modules/custom/drupalcamp_2018/drupalcamp_2018.services.yml

 modules/custom/drupalcamp_2018/src/Plugin/Musician/

What >> API >> Usage >> Types

Creating a plugin type

MusicianManager

public function __construct(\Traversable $namespaces, CacheBackendInterface
$cache_backend, ModuleHandlerInterface $module_handler) {

 parent::__construct('Plugin/Musician', $namespaces, $module_handler, 'Drupal
\drupalcamp_2018\Plugin\MusicianInterface', 'Drupal\drupalcamp_2018\Annotation
\Musician');

 $this->alterInfo('drupalcamp_2018_musician_info');

 $this->setCacheBackend($cache_backend, 'drupalcamp_2018_musician_plugins');

}

What >> API >> Usage >> Types

Creating a plugin type

Musician Annotation

 class Musician extends Plugin {

 public $id;

 public $name;

 public $instrument;

 // other attributes like rhythm, pitch, etc.

 }

What >> API >> Usage >> Types

Creating a plugin type
Extending DefaultPluginManager

• CategorizingPluginManagerTrait — Methods for categorizing plugin definitions
based on a ‘category’ key. Used in core by ActionManager, BlockManager,
ConditionsManager and FieldTypePluginManager.

• FilteredPluginManagerTrait — Methods for plugin managers that allow filtering
plugin definitions. Used by BlockManager, ConditionManager and
LayoutPluginManager.

• PluginDependencyTrait — For calculating dependencies of a plugin. Views and
config entities use this one.

What >> API >> Usage >> Types

What is a
plugin?
A plugin is an instance of a plugin type.

Photo by Brandon Wilson on Unsplash

Creating a plugin
MY_MODULE/src/Plugin/Musician/Guitarist.php

namespace Drupal\MY_MODULE\Plugin\Musician;

use Drupal\drupalcamp_2018\Plugin\MusicianBase;

/**
 * Provides a guitarist
 *
 * @Musician (
 * id = guitarist,
 * name = Guitar,
 * instrument = guitar,
 * . . .
 *)
 */
class Guitarist extends MusicianBase {

}

What >> API >> Usage >> Types >> Plugins

Creating a plugin
$union_rep = \Drupal::service('plugin.manager.musician');

$picker = $union_rep->getDefinition(‘guitarist');

$picker->play('Stairway to Heaven');

What >> API >> Usage >> Types >> Plugins

Plugin
derivatives
Derivatives are plugins that
are derived from other data.

Photo by Chris Liverani on Unsplash

What >> API >> Usage >> Types >> Plugins >> Derivatives

Plugin derivatives
namespace Drupal\MY_MODULE\Plugin\Musician;

use Drupal\drupalcamp_2018\Plugin\MusicianBase;

/**
 * Provides a guitarist
 *
 * @Musician (
 * id = guitarist,
 * name = Guitar,
 * instrument = guitar,
 * deriver = Drupal\drupalcamp_2018\Plugin\Derivative\GuitarDeriver
 *)
 */
class Guitarist extends MusicianBase {

}

What >> API >> Usage >> Types >> Plugins >> Derivatives

Plugin derivatives
class GuitarDeriver extends DeriverBase implements ContainerDeriverInterface {

[boring stuff here]

 public function getDerivativeDefinitions($base_plugin_definition) {
 $this->derivatives = [];

 $node_storage = $this->entityTypeManager->getStorage('node');
 $node_ids = $node_storage->getQuery()
 ->condition('type', 'musician')
 ->condition('field_instrument', 'guitar')
 ->execute();

 if (!empty($node_ids)) {
 $nodes = $node_storage->loadMultiple($node_ids);
 foreach ($nodes as $node) {
 $this->derivatives[$node->id()] = $base_plugin_definition;
 $this->derivatives[$node->id()][‘name’] = $node->field_name->getValue();
 $this->derivatives[$node->id()][‘instrument’] = $node->field_axe->getValue();
 }
 }

 return $this->derivatives;
 }

}

What >> API >> Usage >> Types >> Plugins >> Derivatives

Plugin derivatives
$pickers = $union_rep->getDefinitions('guitarist');

 "guitarist:3" => [
 "id" => "guitarist",
 "name" => [
 [
 "value" => "Leo Kottke",
],
],
 "instrument" => [
 [
 "value" => "12-string Acoustic",
],
],
 "deriver" => "Drupal\drupalcamp_2018\Plugin\Derivative\GuitarDeriver",
 "class" => "Drupal\drupalcamp_2018\Plugin\Musician\Guitar",
 "provider" => "drupalcamp_2018",
],
 "guitarist:4" => [
 "id" => "guitarist",
 "name" => [
 [
 "value" => "Mark Knopfler",
],
],
 "instrument" => [
 [
 "value" => "Stratocaster",
],
],
 "deriver" => "Drupal\drupalcamp_2018\Plugin\Derivative\GuitarDeriver",
 "class" => "Drupal\drupalcamp_2018\Plugin\Musician\Guitar",
 "provider" => "drupalcamp_2018",
],

$mark_knopfler = $musician_manager->getDefinition('guitarist:4');
$mark_knopfler->play('Money For Nothing');

What >> API >> Usage >> Types >> Plugins >> Derivatives

Plugin
collections
Because we really don’t want
everybody playing all the
time.

Photo by Manuel Nägeli on Unsplash

Plugin collections

Collections store plugin configurations.

Best used when plugin instances are configurable.

Usually associated with config entities, like Blocks and Views.

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections

Plugin collections

Core

• Condition

• Entity

• Filter

• Image

• Tours

• Views — https://www.drupal.org/project/views/issues/
1817582

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections

https://www.drupal.org/project/views/issues/1817582

Plugin collections
namespace Drupal\drupalcamp_2018;  
 
use Drupal\Core\Plugin\DefaultLazyPluginCollection;  
 
/**  
 * An experimental collection of musicians.  
 */  
class MusicianPluginCollection extends DefaultLazyPluginCollection {

 
 /**  
 * The key within the plugin configuration that contains the plugin ID  
 */  
 protected $pluginKey = 'id';

 
}

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections

Plugin collections

$guitarists = new MusicianPluginCollection('guitarists');

$mark_knopfler = $guitarists->get('guitarist:4');

$mark_knopfler->play('Sultans of Swing');

What >> API >> Usage >> Types >> Plugins >> Derivatives >> Collections

One more
thing…

 https://www.drupal.org/u/sunset_bill

 https://www.linkedin.com/in/bgbohling/

Photo by Daniel Jensen on Unsplash

https://www.drupal.org/u/sunset_bill
https://www.linkedin.com/in/bgbohling/

Unplugging
Resources:

https://www.drupal.org/docs/8/api/plugin-api

https://api.drupal.org/api/drupal/core!core.api.php/group/
plugin_api/8.6.x

Daniel Sipos
 sitepoint.com
 webomelette.com

drupalize.me

https://www.drupalcampatlanta.com/2018/sessions/
plugins-or-where-does-thing-go

Photo by Adi Goldstein on Unsplash

https://www.drupal.org/docs/8/api/plugin-api
https://api.drupal.org/api/drupal/core!core.api.php/group/plugin_api/8.6.x
http://sitepoint.com
http://webomelette.com
http://drupalize.me
https://www.drupalcampatlanta.com/2018/sessions/plugins-or-where-does-thing-go

